Specific inhibition of mitochondrial fatty acid oxidation by 2-bromopalmitate and its coenzyme A and carnitine esters.
نویسندگان
چکیده
1. The CoA and carnitine esters of 2-bromopalmitate are extremely powerful and specific inhibitors of mitochondrial fatty acid oxidation. 2. 2-Bromopalmitoyl-CoA, added as such or formed from 2-bromopalmitate, inhibits the carnitine-dependent oxidation of palmitate or palmitoyl-CoA, but not the oxidation of palmitoylcarnitine, by intact liver mitochondria. 3. 2-Bromopalmitoylcarnitine inhibits the oxidation of palmitoylcarnitine as well as that of palmitate or palmitoyl-CoA. It has no effect on succinate oxidation, but inhibits that of pyruvate, 2-oxoglutarate or hexanoate; however, the oxidation of these substrates (but not of palmitate, palmitoyl-CoA or palmitoyl-carnitine) is restored by carnitine. 4. In damaged mitochondria, added 2-bromopalmitoyl-CoA does inhibit palmitoylcarnitine oxidation; pyruvate oxidation is unaffected by the inhibitor alone, but is impaired if palmitoylcarnitine is subsequently added. 5. The findings have been interpreted as follows. 2-Bromopalmitoyl-CoA inactivates (in a carnitine-dependent manner) a pool of carnitine palmitoyltransferase which is accessible to external acyl-CoA. This results in inhibition of palmitate or palmitoyl-CoA oxidation. A second pool of carnitine palmitoyltransferase, inaccessible to added acyl-CoA in intact mitochondria, can generate bromopalmitoyl-CoA within the matrix from external 2-bromopalmitoylcarnitine; this reaction is reversible. Such internal 2-bromopalmitoyl-CoA inactivates long-chain beta-oxidation (as does added 2-bromopalmitoyl-CoA if the mitochondria are damaged) and its formation also sequesters intramitochondrial CoA. Since this CoA is shared by pyruvate and 2-oxoglutarate dehydrogenases, the oxidation of their substrates is depressed by 2-bromopalmitoylcarnitine, unless free carnitine is available to act as a ;sink' for long-chain acyl groups. 6. These effects are compared with those reported for other inhibitors of fatty acid oxidation.
منابع مشابه
Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion.
Several approaches were used to test the hypothesis proposing a role for acyl-CoA esters in nutrient-induced insulin release (Prentki, M., and Matschinsky, F. M. (1987) Physiol. Rev. 67, 1185-1248; Corkey, B. E., Glennon, M. C., Chen, K. S., Deeney, J. T., Matschinsky, F. M., and Prentki, M. (1989) J. Biol. Chem. 264, 21608-21612). Exogenous saturated long chain fatty acids markedly potentiated...
متن کاملPeroxisomal beta-oxidation of branched chain fatty acids in rat liver. Evidence that carnitine palmitoyltransferase I prevents transport of branched chain fatty acids into mitochondria.
Fatty acid beta-oxidation was investigated in highly purified mitochondrial and peroxisomal preparations from rat liver. Under isotonic conditions, pristanic and homophytanic acid beta-oxidation in purified peroxisomes was severalfold greater compared to the oxidation in purified mitochondria. Branched chain fatty acid beta-oxidation in purified mitochondria was very low, and the oxidation was ...
متن کاملEstimation of peroxisomal beta-oxidation in rat heart by a direct assay of acyl-CoA oxidase.
The contribution of peroxisomes to palmitate beta-oxidation in rat heart was estimated by either inhibiting mitochondrial beta-oxidation or measuring the activity of acyl-CoA oxidase. When respiratory inhibitors such as KCN or antimycin plus rotenone, or inhibitors of mitochondrial fatty acid uptake such as 2-tetradecylglycidic acid or 2-bromopalmitate, were used, degrees of inhibitions ranging...
متن کاملPrevention of peroxisomal proliferation by carnitine palmitoyltransferase inhibitors in cultured rat hepatocytes and in vivo.
1. The induction of peroxisomal beta-oxidation activities by bezafibrate in cultured rat hepatocytes and in the rat in vivo was prevented by inhibitors of carnitine acyltransferase, e.g. 2-bromopalmitate, 2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylate or 2-tetradecylglycidic acid. 2. The prevention of peroxisomal proliferation by carnitine palmitoyltransferase inhibitors could not be account...
متن کاملDecreased mitochondrial carnitine translocase in skeletal muscles impairs utilization of fatty acids in insulin-resistant patients.
Insulin resistance (IR) and its health consequences (diabetes, hypertension, cardiovascular disease, obesity etc.) affect between 25 and 35% of Westernized populations. Decreased fatty acid (FA) oxidation in skeletal muscle is implicated in obesity-related IR. Carnitine-acylcarnitine translocase (CACT) transports long-chain FAs both into mitochondria (as carnitine esters for energy-generating p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 129 1 شماره
صفحات -
تاریخ انتشار 1972